XtrapulS CD1-k
Installation Guide

CANopen
drive
WARNING

This is a general manual describing a series of servo drives having output capability suitable for driving AC brushless sinusoidal servo motors.

Please see Xtrapuls CD1-k User Guide for the operation of the drive (commissioning, configuration, ...).

For the CANopen communication, see manual Xtrapuls CD1-k – CANopen Communication Profile.

Instructions for storage, use after storage, commissioning as well as all technical details require the MANDATORY reading of the manual before getting the drives operational.

Maintenance procedures should be attempted only by highly skilled technicians having good knowledge of electronics and servo systems with variable speed (EN 60204-1 standard) and using proper test equipment.

The conformity with the standards and the “CE” approval is only valid if the items are installed according to the recommendations of the drive manuals. Connections are the user's responsibility if recommendations and drawings requirements are not met.

Any contact with electrical parts, even after power down, may involve physical damage. Wait for at least 5 minutes after power down before handling the drives (a residual voltage of several hundreds of volts may remain during a few minutes).

ESD INFORMATION (Electro Static Discharge)
INFRANOR drives are conceived to be best protected against electrostatic discharges. However, some components are particularly sensitive and may be damaged if the drives are not properly stored and handled.

STORAGE
- The drives must be stored in their original package.
- When taken out of their package, they must be stored positioned on one of their flat metal surfaces and on a dissipating or electrostatically neutral support.
- Avoid any contact between the drive connectors and material with electrostatic potential (plastic film, polyester, carpet...).

HANDLING
- If no protection equipment is available (dissipating shoes or bracelets), the drives must be handled via their metal housing.
- Never get in contact with the connectors.

DISPOSAL
This symbol indicates that INFRANOR devices must be eliminated by selective disposal and not with household waste.

INFRANOR does not assume any responsibility for any physical or material damage due to improper handling or wrong descriptions of the ordered items.
Any intervention on the items, which is not specified in the manual, will immediately cancel the warranty.

Infranor reserves the right to change any information contained in this manual without notice.

© INFRANOR, April 2016. All rights reserved.
Issue: 5.15
Content

CONTENT

CHAPTER 1 – GENERAL DESCRIPTION

1 - INTRODUCTION .. 5
2 - DESCRIPTION / COMPLIANCE WITH THE STANDARDS.. 5
 2.1 - GENERAL DESCRIPTION ... 5
 2.2 - REFERENCE TO THE STANDARDS: "CE" CERTIFICATION ... 6
 2.3 - REFERENCE TO THE STANDARDS: "UL" LISTING .. 6
3 - OTHER DOCUMENTS REQUIRED FOR THE COMMISSIONING .. 6

CHAPTER 2 – SPECIFICATIONS

1 - MAIN TECHNICAL DATA .. 7
 1.1 – XTRAPULS CD1-k-230/I SINGLE-AXIS DRIVE ... 7
 1.2 – XTRAPULS CD1-K-400/I SINGLE-AXIS DRIVE ... 7
 1.3 – COMMON SPECIFICATIONS TO THE XTRAPULS CD1-k-230/I AND XTRAPULS CD1-k-
 400/I DRIVE TYPES .. 8

2 - DIMENSIONS

 2.1 - XTRAPULS CD1-k-230/I DRIVE ... 11
 2.2 - XTRAPULS CD1-k-400/1.8 TO 7.2 A DRIVE .. 11
 2.3 - XTRAPULS CD1-k-400/14 A DRIVE .. 11
 2.4 - XTRAPULS CD1-k-400/30/45/70 AND 90 A DRIVE ... 11
 2.5 - BRAKING RESISTOR dp 100/100, dp 200/100, dp 50/200, dp33/280 AND dp 16.5/560... 12

3 - FASTENING .. 13
 3.1 - XTRAPULS CD1-k-230/I DRIVE ... 13
 3.2 - XTRAPULS CD1-k-400/1.8 TO 7.2 A DRIVE .. 13
 3.3 - XTRAPULS CD1-k-400/14 A DRIVE .. 13
 3.4 - XTRAPULS CD1-k-400/30/45/70 AND 90 A DRIVE ... 13

4 - MULTIAxis CABINET MOUNTING
 4.1 - XTRAPULS CD1-k-230/I DRIVE ... 14
 4.2 - XTRAPULS CD1-k-400/1.8 TO 7.2 A DRIVE .. 14
 4.3 - XTRAPULS CD1-k-400/14 A DRIVE .. 14
 4.4 - XTRAPULS CD1-k-400/30/45/70 AND 90 A DRIVE ... 14

CHAPTER 3 – INPUTS-OUTPUTS

1 - CONNECTORS LOCATION .. 15
 1.1 - SINGLE-AXIS DRIVES XTRAPULS CD1-k-230-I AND CD1-k-400-I 15
 1.2 - XTRAPULS CD1-k-400/30/45/70 AND 90 DRIVE ... 15

2 - LED DISPLAY ... 16
 2.1 - IDENTIFICATION OF THE LEDs .. 16

3 - DRIVE ADDRESSING: SELECTION OF THE TRANSMISSION SPEED 17

4 - X1 CONNECTOR: RESOLVER SENSOR .. 18

5 - X2 CONNECTOR: INPUTS-OUTPUTS .. 18

 5.1 - SPECIFICATION OF THE LOGIC INPUTS: INHIBIT, FC+, FC-, INDEX, CAPTURE, LOW
 SPEED ... 19
 5.2 - SPECIFICATION OF THE LOGIC OUTPUT "AOK" ON RELAY ... 19
 5.3 - SPECIFICATION OF THE LOGIC OUTPUTS ... 19
 5.4 - SPECIFICATION OF THE ANALOG INPUTS .. 20

6 - X3 CONNECTORS: ENCODER .. 20
 6.1 - X3 CONNECTOR FOR TTL INCREMENTAL ENCODER & HES INPUT (Sub D 25 pins
 female) ... 20
 6.2 - X3 CONNECTOR FOR SinCos INCREMENTAL ENCODER & HES INPUT (Sub D 25 pins
 female) ... 21
 6.3 - X3 CONNECTOR FOR ABSOLUTE SINGLE-TURN SinCos ENCODER (Sub D 25 pins
 female) ... 22
CHAPTER 4 - CONNECTIONS

1 - CONNECTION DIAGRAMS
 1.1 – XTRAPULS CD1-k 230/1 DRIVE
 1.2 – XTRAPULS CD1-k 400/1 DRIVE
 1.3 – CONNECTION OF THE SERIAL LINK
 1.4 – CONNECTION OF A BACKUP BATTERY
 1.5 – CONNECTION FOR A MULTIAxis APPLICATION

2 - WIRING RECOMMENDATIONS
 2.1 - GROUND CONNECTIONS AND LEAKAGE CURRENT
 2.2 - SHIELD CONNECTION OF THE CONNECTORS
 2.3 – CONNECTION VUE OF XTRAPULS CD1-K-400/30/45/70 AND 90
 2.4 – MOTOR, RESOLVER AND ENCODER CABLES
 2.5 - SERIAL LINK AND CAN COMMUNICATION CABLES
 2.6 - CONNECTION CABLES OF THE BRAKING RESISTOR

3 - FIRST POWERING OF THE DRIVE
 3.1 – VERY IMPORTANT
 3.2 – SWITCHING ON THE 24 Vdc SUPPLY
 3.3 – SWITCHING ON THE POWER SUPPLY (230 Vac or 400 Vac according to the drive type)
 3.4 – COMMISSIONING

4 - REQUIREMENTS FOR THE COMPLIANCE WITH THE UL STANDARDS
 4.1 – CONNECTION BY MEANS OF A FASTON SOCKET
 4.2 - 24 V SUPPLY
 4.3 – POWER SUPPLY AND UL FUSE RATING
 4.4 – XTRAPULS CD1-k 230/1 DRIVE: CONNECTION DIAGRAM WITH PROTECTIONS BY "UL" FUSES
 4.5 – XTRAPULS CD1-k 400/1 DRIVE: CONNECTION DIAGRAM WITH PROTECTIONS BY "UL" FUSES
 4.6 – CONNECTION EXAMPLE FOR A UL COMPLIANT MULTIAxis APPLICATION

CHAPTER 5 - APPENDIX

1 - HARDWARE ADJUSTMENTS OF THE LOGIC BOARD
2 – ADJUSTMENT TO VARIOUS RESOLVER TYPES
3 – USE OF THE "AOK" OUTPUT
4 - ENERGY RECUPERATION VIA A BRAKING RESISTOR
5 - ORDERING CODE
1 - INTRODUCTION

XtrapulsCD1-k all-digital drives with sinusoidal PWM control are servo drives that provide the control of brushless AC motors with a position sensor.

The XtrapulsCD1-k drive is a stand-alone single-axis block including power supply unit and mains filters. It is available in both 230 VAC and 400/480 VAC mains operated voltages.

2 - DESCRIPTION / COMPLIANCE WITH THE STANDARDS

2.1 - GENERAL DESCRIPTION

The XtrapulsCD1-k drive directly controls the motor torque and speed by means of the information provided by a high resolution position sensor (resolver or encoder). The sinusoidal current commutation based on this high resolution position sensor provides very smooth motor torque/force control.

The XtrapulsCD1-k drive can be configured for the feedback of various position sensor types. The appropriate position sensor configuration is selectable by software and saved in the drive.

- With a resolver sensor feedback, the motor absolute position value over one revolution is available and the servo motor can immediately be enabled after the drive power up.
- With a "SinCos tracks" sensor which provides two analog Sin and Cos signals electrically compliant with the SinCos encoder signals and which period is equal to the motor pole pitch, the servo-motor can be immediately enabled after the powering of the drive.
- With an absolute single-turn SinCos encoder feedback (Heidenhain ERN 1085 or compliant), the servo motor can also immediately be enabled after the drive power up.
- With an incremental encoder only, a motor phasing procedure (Phasing) must be executed at each drive power up before the motor enabling.
- With an incremental encoder + Hall Effect Sensors (HES) feedback, the motor phasing procedure is no more necessary and the servo motor can immediately be enabled after the drive power up.
- With an absolute single-turn, multi-turn or linear encoder using the ENDAT or HIPERFACE communication protocols and fitted with incremental SinCos outputs, the servo-motor can also be immediately enabled after the powering of the drive.

Series XtrapulsCD1-k drives have their own DC/DC converter to provide appropriate logic voltage to the modules. An auxiliary 24VDC +/- 15 % supply is generally available on all machines and supplies a DC/DC converter with all logic supplies required by the drive. The auxiliary supply allows to keep the logic board on, after the power supply has been switched off, in order to keep the position output and to avoid initializing the machine all over again. A 24 VDC battery supply with specific wiring allows to keep the position even after switching off the auxiliary 24 VDC supply. This wiring can be used for "absolute" operation with the Xtrapuls CD1-k drive (see chapter 4: Connections).

The power supply is depending on the drive type:

- XtrapulsCD1-k-230/I: 230 VAC single-phase mains operation power supply with limitation of the operation power (see chapter 2, section 1.1) - or three-phase via a transformer or an auto-transformer or three-phase mains operation if there are three-phase mains available in 200 to 230 VAC.
- XtrapulsCD1-k-400/I: 400 to 480 VAC three-phase mains operated power supply.

A soft start system of the power supply allows to limit the inrush current at power on.

The very small dimensions of the XtrapulsCD1-k drive allow an optimum integration in 300 mm deep cabinets (connectors included).
2.2 - REFERENCE TO THE STANDARDS: "CE" CERTIFICATION

Series Xtrapuls CD1-k drives have been approved with regard to their conformity with the Electromagnetic Compatibility standards concerning the power servos referenced in the EN 61800-3 standard "Electrical variable speed power servo systems":

- EN 55011, group 1, C3 category, regarding radiated radioelectric disturbances,
- EN 61000.4-2-3-4-5 regarding immunity.

Standard to be applied to the electrical equipment of industrial machines: EN 60204-1.

2.3 - REFERENCE TO THE STANDARDS: "UL" LISTING

Xtrapuls CD1-k series have been « cULus » listed according to UL508C and UL840 regarding the insulator. This product was evaluated to:

- the Third Edition of UL508C, the UL Standard for Power Conversion Equipment, date for the UL Listing (USL),
- the CSA Standard for Industrial Control Equipment, C22.2 N° 14-10 for the Canadian UL Listing (CNL).

Providing that the manual is specifying that the end user has to provide an isolated power supply, for 24 VDC auxiliary input protected by a 4 A UL Listed fuse, the power board is considered within a limited voltage/current circuit per section 31.4 of UL508C. Therefore, spaces on the power board are not required to be evaluated per section 31.2 of UL508C and were evaluated according to UL 840. Per UL 840 requirements, spaces are limited to 2.5 mm assuming pollution degree 2 environment.

Ground connection is fixed in the frame of the device by a rivet, Avibulb masse, BN10-5168. The connector complies with standard dimensions given in table 6.2 of UL 310, the standard for Electrical Quick connect terminals.

3 - OTHER DOCUMENTS REQUIRED FOR THE COMMISSIONING

- Xtrapuls CD1-k User Guide,
- CANopen communication protocol for Xtrapuls CD1-k drives.
- "CD1-a/CD1-k SinCos track feedback" application note regarding the use of motors equipped with "SinCos tracks" position sensors.
- "CD1-a/CD1-k absolute encoders feedback" application note regarding the use of absolute single-turn, multi-turn or linear encoders using the ENDAT or HIPERFACE Communication protocols.
Chapter 2 – Specifications

1 - MAIN TECHNICAL DATA

1.1 – XTRAPULS CD1-k-230/I SINGLE-AXIS DRIVE

Mains operated power supply voltage 230 Vac +10 % / -15 % single-phase or 3-phase 50 to 60 Hz

Isolated auxiliary logic and motor brake supply voltage 24 Vdc +/-15 % - 320 mA without brake

Motor phase-phase output voltage 200 Vrms

Integrated braking system External resistor 100 Ohm / 100 W (dp 100/100) Minimum resistance: 50 Ohm

Minimum inductance between phases 1 mH

OUTPUT CURRENT RATINGS (at a maximum room temperature of 40°C)

<table>
<thead>
<tr>
<th>Drive type</th>
<th>Max. output current (Arms) for 1 sec. +/- 5 % (230 VAC)</th>
<th>Rated output current (Arms) (230 VAC)</th>
<th>Power losses (W)</th>
<th>Rated input current (Arms) (230 VAC, 60 Hz)</th>
<th>Max. protection fuses for line circuit RK5 listed (Bussman / Littelfuse)</th>
<th>Short-circuit power of the mains</th>
<th>UL listed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD1-k-230/2.25</td>
<td>2.25</td>
<td>1.1</td>
<td>25</td>
<td>1.1</td>
<td>6 A</td>
<td>5 kA</td>
<td>yes</td>
</tr>
<tr>
<td>CD1-k-230/4.5</td>
<td>4.5</td>
<td>2.25</td>
<td>30</td>
<td>2.25</td>
<td>6 A</td>
<td>5 kA</td>
<td>yes</td>
</tr>
<tr>
<td>CD1-k-230/7.5</td>
<td>7.5</td>
<td>3.75</td>
<td>44</td>
<td>3.75</td>
<td>6 A</td>
<td>5 kA</td>
<td>yes</td>
</tr>
<tr>
<td>CD1-k-230/10.5</td>
<td>10.5</td>
<td>5.25</td>
<td>55</td>
<td>5.25</td>
<td>6 A</td>
<td>5 kA</td>
<td>yes</td>
</tr>
<tr>
<td>CD1-k-230/16.5</td>
<td>16.5</td>
<td>8.25</td>
<td>66</td>
<td>8.25</td>
<td>9 A</td>
<td>5 kA</td>
<td>yes</td>
</tr>
</tbody>
</table>

OPERATION POWER RESTRICTION IN SINGLE-PHASE

Continuous RMS power ensuring a capacitor lifetime of 20 000 hours:
- 650 W for Xtrapuls CD1-k-230/2.25 to 10.5
- 1000 W for Xtrapuls CD1-k-230/16.5

1.2 – XTRAPULS CD1-K-400/I SINGLE-AXIS DRIVE

Mains operated power supply voltage 400 to 480 Vac +10 % / -15 % 3-phase, TN or TT system with earthed neutral point 50 to 60 Hz (phase-earth voltage must be balanced)

Auxiliary logic and motor brake supply voltage 24 Vdc +/-15 % - 320 mA without brake

Motor phase-phase output voltage 380 to 460 Vrms depending on the mains

Integrated braking system Xtrapuls CD1-k-400/1.8 to 7.2 A:
- External resistor: 200 Ohm / 100 W (dp 200/100)
- Minimum resistor value: 150 Ω/100 W

Xtrapuls CD1-k-400/14 A:
- External resistor: 50 Ohm / 200 W (dp 50/200)

Xtrapuls CD1-k-400/30 and 45 A:
- External resistor: 33 Ω/280 W (dp 33/280)

Xtrapuls CD1-k-400/70 and 90 A:
- External resistor: 16.5 Ω/560 W (dp 16.5/560)

Minimum inductance between phases 2 mH
OUTPUT CURRENT RATINGS (at a maximum room temperature of 40°C)
Output voltage range for 400-480 VAC (rms) three-phase mains
Output current range: 1.8 A, 2.7 A, 5.1 A, 7.2 A, 14 A, 30 A, 45 A, 70 A, 90 A (rms)

<table>
<thead>
<tr>
<th>Drive type</th>
<th>Max. output current (Arms) for 1 sec. +/- 5 % (480 VAC)</th>
<th>Rated output current (Arms) (480 VAC)</th>
<th>Power losses (W)</th>
<th>Rated input current (Arms) (480 VAC, 60 Hz)</th>
<th>Max. protection fuses for line circuit RK5 or A60Q40 for 400/70 and 90 listed</th>
<th>Short-circuit power of the mains</th>
<th>UL listed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD1-k-400/1.8</td>
<td>1.8</td>
<td>0.9</td>
<td>35</td>
<td>0.9</td>
<td>2 A</td>
<td>5 kA</td>
<td>yes</td>
</tr>
<tr>
<td>CD1-k-400/2.7</td>
<td>2.7</td>
<td>1.35</td>
<td>43</td>
<td>1.35</td>
<td>2 A</td>
<td>5 kA</td>
<td>yes</td>
</tr>
<tr>
<td>CD1-k-400/5.1</td>
<td>5.1</td>
<td>2.55</td>
<td>71</td>
<td>2.55</td>
<td>4 A</td>
<td>5 kA</td>
<td>yes</td>
</tr>
<tr>
<td>CD1-k-400/7.2</td>
<td>7.2</td>
<td>3.6</td>
<td>93</td>
<td>3.6</td>
<td>4 A</td>
<td>5 kA</td>
<td>yes</td>
</tr>
<tr>
<td>CD1-k-400/14</td>
<td>14</td>
<td>7</td>
<td>200</td>
<td>7</td>
<td>8 A</td>
<td>5 kA</td>
<td>yes</td>
</tr>
<tr>
<td>CD1-k-400/30</td>
<td>30</td>
<td>15</td>
<td>400</td>
<td>15</td>
<td>20 A</td>
<td>5 kA</td>
<td>yes</td>
</tr>
<tr>
<td>CD1-k-400/45</td>
<td>45</td>
<td>20</td>
<td>560</td>
<td>20</td>
<td>20 A</td>
<td>5 kA</td>
<td>yes</td>
</tr>
<tr>
<td>CD1-k-400/70</td>
<td>70</td>
<td>35</td>
<td>650</td>
<td>35</td>
<td>40 A</td>
<td>5 kA</td>
<td>yes</td>
</tr>
<tr>
<td>CD1-k-400/90</td>
<td>90</td>
<td>35</td>
<td>650</td>
<td>35</td>
<td>40 A</td>
<td>5 kA</td>
<td>yes</td>
</tr>
</tbody>
</table>

1.3 – COMMON SPECIFICATIONS TO THE XTRAPULS CD1-k-230/I AND XTRAPULS CD1-k-400/I DRIVE TYPES

- Servo loops: current, speed and position
- Digital

- Mains filter on power supply
- Integrated in the drive

- CD1-400/90 exception:
 - EMC capacitors integrated
 - Common mode choke not integrated
 - Recommended filter: F-400-70-90

- Common mode filter on auxiliary supply
- Integrated in the drive

- Common mode filter on motor brake supply
- Integrated in the drive

- Position sensor
 - Transmitter resolver
 - Absolute single-turn encoder (ERN1085 or compliant)
 - Incremental encoder (TTL or SinCos signals)
 - Incremental encoder + Hall Effect Sensors

- Power stage protections
 - See table of the main protections in the Xtrapuls CD1-k User Guide

- Motor brake control
 - 1.5 A maximum with 24 Vdc.

- PWM switching frequency
 - 8 kHz

- Minimum inductance between phases
 - 1 mH pour 230 V / 2 mH pour 400 V

- Digital current regulator (PI)
 - Adjustable

- Current loop bandwidth
 - Cut-off frequency for 45° phase shift: 1000 Hz

- Internal current limitation
 - Imax: 20 % to 100 % and I rated: 20 % to 50 %
 - Authorized Imax duration = 1 second

- Digital speed and position regulators
 - Sampling period = 0.5 ms
 - Anti-wind-up system of the integrator
 - Adjustable digital gains

- Speed loop bandwidth
 - Selectable cut-off frequency for 45° phase shift: 50 Hz, 75 Hz or 100 Hz

- Max. motor speed
 - Adjustable from 100 rpm to 25 000 rpm
Resolver input
- Resolution: 65536 ppr (16 bit)
- Excitation frequency: 8 kHz
- Transformation ratio: 0.3 to 0.5 (other values need factory adjustment)

Encoder input
- Software selectable:
 - Quadrature signals A & B with Z marker pulse
 - RS 422 line receiver
 - Maximum pulse frequency: 1 MHz
 - Resolution: 500 to 10^6 ppr
 - Incremental Sin/Cos encoder
 - Heidenhain 1Vcc Sin/Cos type or compliant
 - Maximum signal frequency: 200 kHz
 - Resolution: 500 to 10^6 ppr
 - Interpolation factor: 1024
- Absolute single-turn Sin/Cos encoder
 - Heidenhain ERN 1085 or compliant
 - Maximum signal frequency: 200 kHz
 - Resolution: 2048 or 512 ppr
 - Interpolation factor: 1024

Pulse & Direction input
- Re-configuration of the encoder input for stepper motor emulation:
 - Line receiver RS-422
 - Maximum pulse frequency: 1 MHz
 - Resolution: 200 to 10^6 pitch/revolution

Hall sensors input
- Software selectable: 120° or 60° HES type
- 5 V or 12 V supply voltage
- HES sequence error detection

Logic inputs
- INHIBIT
- FC+ and FC- limit switches
- INDEX
- CAPTURE
- LOW SPEED

Logic outputs
- 4 logic outputs activated by bus

Relay outputs
- Relay contact: open if error
 - Umax = 50 V, Imax = 100 mA, Pmax = 10 W
- Motor brake coil with 24 VDC/1.5 A

Open collector output protected against load short-circuit
- Re-configuration of the logic outputs by means of jumpers:
 - +/- 10 V, resolution = 14 bits
 - CANopen protocol (DS 301 – DSP 402)
- LEDs on front panel + diagnostic via serial link RS 232 + diagnostic via CANopen.
Motor and application parameter setting

Automatic functions

Compliance with the standards: **CE** certification. 360° shield connection, equipotentiality according to the wiring rules. Xtrapuls CD1-400/70 and 90 A with mains filter F-400-70/90.

Compliance with the standards: **UL** listing "360°" shield; equipotentiality according to the wiring rules.

Temperature
- Storage: -20°C to +70°C
- Operation: +5°C to +40°C

Altitude
- 1000 m

Moisture
- <50% at 40°C and <90% at 20°C: EN 60204-1 standard

Cooling
- Forced air (fan integrated in the Xtrapuls CD1-k drive)

Mounting position
- Vertical

Environment
- Open chassis to be mounted in a housing protecting the drive from conducting dust and condensation (pollution degree 2 environment)

Mounting location
- Closed cabinet without any conducting and/or corroding agents and according to the environment conditions requirements

Weight
- Xtrapuls CD1-k-230/I: about 1.5 kg
- Xtrapuls CD1-k-400/1.8 to 7.2 A: about 2 kg
- Xtrapuls CD1-k-400/14: about 3 kg
- Xtrapuls CD1-k-400/30 and 45: about 5 kg
- Xtrapuls CD1-k-400/70 and 90: about 6 kg

Serial link RS 232 or bus interface with CANopen protocol

Drive adjustment to the motor (AUTO-PHASING)

Servo control adjustment (AUTO-TUNING)

EMC standards:
- Immunity: EN 61000.4-2-3-4-5
- Conducted and radiated disturbances: EN 55011, Group 1, C3 category

Electrical standards for industrial machines:
- EN 60204-1: insulator 1500 Vac / 1 mn leakage current > 30 mA (EMI filters).

Xtrapuls CD1-k series have been "ULus" listed according to UL508C and UL840 regarding the insulator.

This product was evaluated to:
- the Third Edition of UL508C, the UL Standard for Power Conversion Equipment, for the UL Listing (USL),
- the CSA Standard for Industrial Control Equipment, C22.2 N° 14-10, for the Canadian UL Listing (CNL).

From 40°C, the rated currents must be reduced of 3% per additional Celsius degree

Max. temperature: 50°C

Condensation prohibited (storage and operation)

Check for free ventilation and no upper or lower obstruction of the air admissions.

Condensation prohibited

Closed cabinet without any conducting and/or corroding agents and according to the environment conditions requirements
2 - DIMENSIONS

2.1 - XTRAPULS CD1-k-230/I DRIVE

2.2 - XTRAPULS CD1-k-400/1.8 TO 7.2 A DRIVE

2.3 - XTRAPULS CD1-k-400/14 A DRIVE

2.4 - XTRAPULS CD1-k-400/30/45/70 AND 90 A DRIVE
2.5 - BRAKING RESISTOR dp 100/100, dp 200/100, dp 50/200, dp 33/280 AND dp 16.5/560

dp 16.5/560

Connection of the braking resistor dp 16.5/560 on pins 1 and 3 of the braking resistor connector.

<table>
<thead>
<tr>
<th>DIMENSIONS</th>
<th>dp 50/200, dp 100/100 et dp 200/100</th>
<th>dp 33/280</th>
<th>dp 16.5/560</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>157 mm</td>
<td>290 mm</td>
<td>290 mm</td>
</tr>
<tr>
<td>B</td>
<td>145 mm</td>
<td>278 mm</td>
<td>278 mm</td>
</tr>
<tr>
<td>C</td>
<td>83 mm</td>
<td>83 mm</td>
<td>57 mm</td>
</tr>
<tr>
<td>D</td>
<td>52 mm</td>
<td>57 mm</td>
<td>145 mm</td>
</tr>
</tbody>
</table>
3 - FASTENING

VERTICAL MOUNTING IS MANDATORY!

3.1 - XTRAPULS CD1-k-230/I DRIVE

3.2 - XTRAPULS CD1-k-400/1.8 TO 7.2 A DRIVE

3.3 - XTRAPULS CD1-k-400/14 A DRIVE

3.4 - XTRAPULS CD1-k-400/30/45/70 AND 90 A DRIVE
4 - MULTIAXIS CABINET MOUNTING

4.1 - XTRAPULS CD1-k-230/1 DRIVE

4.2 - XTRAPULS CD1-k-400/1.8 TO 7.2 A DRIVE

4.3 - XTRAPULS CD1-k-400/14 A DRIVE

4.4 - XTRAPULS CD1-k-400/30/45/70 AND 90 A DRIVE
Chapter 3 – Inputs-Outputs

1 - CONNECTORS LOCATION

1.1 - SINGLE-AXIS DRIVES XTRAPULS CD1-k-230-I AND CD1-k-400-I

1.2 - XTRAPULS CD1-k-400/30/45/70 AND 90 DRIVE
2 - LED DISPLAY

2.1 - IDENTIFICATION OF THE LEDS

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS (green)</td>
<td>System error: continuously lit if error, unlit if no error.</td>
</tr>
<tr>
<td>OK (green)</td>
<td>Errors are grouped on the 'OK' LED: continuously flashing if error, lit if no error.</td>
</tr>
<tr>
<td>SYS (red)</td>
<td>Errors involve: slow flashing, disabling, control, opening of relay contact.</td>
</tr>
</tbody>
</table>

SYS: System error

SYS LED is continuously lit if System error, unlit if no error.

OK: Errors are regrouped on the 'OK' LED: These errors are coded and can be displayed by means of the parameter setting software, via the serial link RS-232 or via the CANopen bus.

OK LED: continuously flashing if error, lit if no error.

The **OK** LED groups the following errors:

- Undervoltage (quick flashing)
- Power supply overvoltage
- Out of 24 Vdc supply range (18 to 29 V)
- Motor phase / GND short-circuit
- Braking system short-circuited or overheated
- Fan
- Motor phase / motor phase short-circuit, power stage temperature, power stage supply, PWM error
- Triggering of the I2t protection
- Counting error
- Position following error
- Low speed overshoot
- EEPROM error
- Procedure execution error (busy)
- Init-400 V error
- Current offset error
- Motor temperature error
- Resolver or encoder cable interruption
- Hall sensors or absolute encoder error.

Notes:

Any of these errors (except for the "Undervolt." error) involves:
- the slow flashing of the **OK** Led
- the drive disabling,
- the motor brake control,
- opening of the **AOK** relay contact. This relay must be wired as described in Chapter 5, section 3, in order to switch-off the power supply and keep a zero type standstill.

The error "No power voltage" involves:
- the drive disabling,
- the motor brake control.
BUS: CANopen RUN LED

The CANopen RUN LED indicates the status of the NMT state machine (see DS-301 – 9.52 NMT state machine):

<table>
<thead>
<tr>
<th>CAN RUN LED</th>
<th>STATUS</th>
<th>ON</th>
<th>1 000 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE FLASH</td>
<td>STOP</td>
<td>OFF</td>
<td>1 000 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 ms</td>
<td></td>
</tr>
<tr>
<td>FLASHING</td>
<td>PRE-OPERATIONAL</td>
<td>ON</td>
<td>200 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 ms</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OPERATIONAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See “DR-303-3 Indicator specification” for more information.

3 - DRIVE ADDRESSING: SELECTION OF THE TRANSMISSION SPEED

Each drive of the network must be configured with one single address.
A DIP8 switch accessible by the operator allows to configure the drive address as well as the communication speed of the “CANopen” bus.

- Addressing (6 selection bits)

Status of the cursors	Address
 OFF OFF OFF OFF OFF OFF | 0
 OFF OFF OFF OFF OFF ON | 1
 OFF OFF OFF ON OFF OFF | 2
 | ...
 ON ON ON ON ON ON ON | 63

- Communication speed (2 selection bits):

Status of the cursors	Speed
 OFF OFF | 1 Mbit
 OFF ON | 500 Kbits
 ON OFF | 250 Kbits
 ON ON | 125 Kbits

Note:
- The "00" address is only to be used in Local mode.
- An address ≠ 00 is to be used in Remote mode (use of the CANopen bus).
4 - X1 CONNECTOR: RESOLVER SENSOR

SUB D 15 PINS FEMALE (SAME FOR ALL DRIVE TYPES XTRAPULS CD1-k-230/I AND CD1-k-400/I)

<table>
<thead>
<tr>
<th>PIN</th>
<th>FUNCTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shield connection</td>
<td>The shield must have a 360° connection on the connector metal cover. This connection can be completed by connecting the wires to pin 1.</td>
</tr>
<tr>
<td>2</td>
<td>S3 (cosine +)</td>
<td>Resolver connector</td>
</tr>
<tr>
<td>3</td>
<td>S4 (sine -)</td>
<td>Resolver connector</td>
</tr>
<tr>
<td>4</td>
<td>R2 (reference -)</td>
<td>Resolver connector</td>
</tr>
<tr>
<td>5</td>
<td>R1 (reference +)</td>
<td>Resolver connector</td>
</tr>
<tr>
<td>10</td>
<td>S1 (cosine -)</td>
<td>Resolver connector</td>
</tr>
<tr>
<td>11</td>
<td>S2 (sine +)</td>
<td>Resolver connector</td>
</tr>
<tr>
<td>12</td>
<td>TC (thermal sensor)</td>
<td>If motor thermal switch connected on X1</td>
</tr>
<tr>
<td>13</td>
<td>TC (thermal sensor)</td>
<td>If motor thermal switch connected on X1</td>
</tr>
</tbody>
</table>

For the connection of other resolver types, see chapter 5, section 2.

5 - X2 CONNECTOR: INPUTS-OUTPUTS

SUB D 15 PINS MALE (SAME FOR ALL DRIVE TYPES XTRAPULS CD1-k-230/I AND CD1-k-400/I)

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INHIBIT</td>
<td>I</td>
<td>Positive logic - Galvanic insulation</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>I</td>
<td>For the shield connection if no "360°" connection</td>
</tr>
<tr>
<td>3</td>
<td>Limit switch +</td>
<td>I</td>
<td>Positive logic - Galvanic insulation</td>
</tr>
<tr>
<td>4</td>
<td>Limit switch -</td>
<td>I</td>
<td>Positive logic - Galvanic insulation</td>
</tr>
<tr>
<td>5</td>
<td>Output 3 / Analog input 1</td>
<td>O/I</td>
<td>Optocoupled logic output ; I = 100 mA Re-configurable as an analog input by jumper</td>
</tr>
<tr>
<td>6</td>
<td>Low speed</td>
<td>I</td>
<td>Positive logic - Galvanic insulation</td>
</tr>
<tr>
<td>7</td>
<td>Capture 2 Index</td>
<td>I</td>
<td>Positive logic - Galvanic insulation</td>
</tr>
<tr>
<td>8</td>
<td>Capture 1</td>
<td>I</td>
<td>Positive logic - Galvanic insulation</td>
</tr>
<tr>
<td>9,10</td>
<td>AOK relay contact</td>
<td>O</td>
<td>Relay contact open if error Pmax = 10 W with Umax = 50 V or Imax = 100 mA</td>
</tr>
<tr>
<td>11</td>
<td>Output 0</td>
<td>O</td>
<td>Optocoupled logic output ; I = 100 mA</td>
</tr>
<tr>
<td>12</td>
<td>Output 1</td>
<td>O</td>
<td>Optocoupled logic output ; I = 100 mA</td>
</tr>
<tr>
<td>13</td>
<td>Output 2 / Analog input 2</td>
<td>O/I</td>
<td>Optocoupled logic output ; I = 100 mA Re-configurable as an analog input by jumper</td>
</tr>
<tr>
<td>14</td>
<td>+ 24 external</td>
<td>I</td>
<td>To be wired if the logic outputs are used</td>
</tr>
<tr>
<td>15</td>
<td>0 V external</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

Both analog inputs 1 and 2 are configurable by means of the OUT/IN-SEL jumpers located on the drive connector board as shown below. The values of the analog inputs can be read via the CANopen bus.

Note: There are only two jumpers on some connector boards for the "Logic outputs / Analog inputs" selection.
5.1 - SPECIFICATION OF THE LOGIC INPUTS: INHIBIT, FC+, FC-, INDEX, CAPTURE, LOW SPEED

These optocoupled inputs are operating in positive logic. The input voltage corresponding to level 1 must be between 18 V and 30 V.

5.2 - SPECIFICATION OF THE LOGIC OUTPUT "AOK" ON RELAY

Relay contact closed if drive OK and open if error. Pmax = 10 W with Umax = 50 V - Imax = 100 mA

5.3 - SPECIFICATION OF THE LOGIC OUTPUTS
5.4 - SPECIFICATION OF THE ANALOG INPUTS

6 - X3 CONNECTORS: ENCODER

SAME CONNECTORS FOR ALL XTRAPULS CD1-k-230/I AND XTRAPULS CD1-k-400/I DRIVE TYPES

6.1 - X3 CONNECTOR FOR TTL INCREMENTAL ENCODER & HES INPUT (Sub D 25 pins female)

The "TTL incremental encoder & HES" configuration is software selectable and stored into the drive EEPROM.

The corresponding X3 connector pin functions are described below.

<table>
<thead>
<tr>
<th>PIN</th>
<th>FUNCTION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Marker Z/</td>
<td>Differential input of the encoder marker pulse Z/</td>
</tr>
<tr>
<td>5</td>
<td>Marker Z</td>
<td>Differential input of the encoder marker pulse Z</td>
</tr>
<tr>
<td>19</td>
<td>Channel A/</td>
<td>Differential input of the encoder channel A/</td>
</tr>
<tr>
<td>6</td>
<td>Channel A</td>
<td>Differential input of the encoder channel A</td>
</tr>
<tr>
<td>20</td>
<td>Channel B/</td>
<td>Differential input of the encoder channel B/</td>
</tr>
<tr>
<td>7</td>
<td>Channel B</td>
<td>Differential input of the encoder channel B</td>
</tr>
<tr>
<td>8</td>
<td>+5 V</td>
<td>Encoder supply voltage (max. current = 300 mA)</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
<td>Encoder supply GND</td>
</tr>
<tr>
<td>11</td>
<td>HALL U</td>
<td>Hall sensor input signal phase U</td>
</tr>
<tr>
<td>24</td>
<td>HALL V</td>
<td>Hall sensor input signal phase V</td>
</tr>
<tr>
<td>12</td>
<td>HALL W</td>
<td>Hall sensor input signal phase W</td>
</tr>
<tr>
<td>10</td>
<td>+12 V</td>
<td>Hall sensors supply voltage: output impedance = 9 Ohm, max. 150 mA available</td>
</tr>
<tr>
<td>23</td>
<td>AGND</td>
<td>Hall sensors supply GND</td>
</tr>
<tr>
<td>9</td>
<td>TC+</td>
<td>Motor thermal sensor input</td>
</tr>
<tr>
<td>22</td>
<td>TC-</td>
<td>Motor thermal sensor input</td>
</tr>
<tr>
<td>others</td>
<td>reserved</td>
<td></td>
</tr>
</tbody>
</table>

ENCODER INPUT LINES SPECIFICATION
(*) The 470 Ω resistor is wired as from index:

<table>
<thead>
<tr>
<th>CD1-k</th>
<th>230</th>
<th>400/1,8 to 7,2 A</th>
<th>400/14 A</th>
<th>400/30 to 45 A</th>
<th>400/70 to 90 A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>αk</td>
<td>αk</td>
<td>X</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

There is no braking resistor on the former versions.

HALL SENSORS INPUT LINES SPECIFICATION

![HALL SENSORS INPUT LINES SPECIFICATION Diagram]

6.2 - X3 CONNECTOR FOR SinCos INCREMENTAL ENCODER & HES INPUT (Sub D 25 pins female)

The "SinCos & HES" incremental encoder configuration is software selectable and stored in the drive EEPROM.

The corresponding X3 connector pin function is described below.

<table>
<thead>
<tr>
<th>PIN</th>
<th>FUNCTION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Marker R/</td>
<td>Differential input of the Sin/Cos encoder reference pulse R/</td>
</tr>
<tr>
<td>13</td>
<td>Marker R</td>
<td>Differential input of the Sin/Cos encoder reference pulse R</td>
</tr>
<tr>
<td>14</td>
<td>Channel A/</td>
<td>Differential input of the Sin/Cos encoder channel A/</td>
</tr>
<tr>
<td>1</td>
<td>Channel A</td>
<td>Differential input of the Sin/Cos encoder channel A</td>
</tr>
<tr>
<td>15</td>
<td>Channel B/</td>
<td>Differential input of the Sin/Cos encoder channel B/</td>
</tr>
<tr>
<td>2</td>
<td>Channel B</td>
<td>Differential input of the Sin/Cos encoder channel B</td>
</tr>
<tr>
<td>8</td>
<td>+5 V</td>
<td>Encoder supply voltage: output impedance = 9 Ohm, max. 150 mA available</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
<td>Encoder supply GND</td>
</tr>
<tr>
<td>11</td>
<td>HALL U</td>
<td>Hall sensor input signal phase U</td>
</tr>
<tr>
<td>24</td>
<td>HALL V</td>
<td>Hall sensor input signal phase V</td>
</tr>
<tr>
<td>12</td>
<td>HALL W</td>
<td>Hall sensor input signal phase W</td>
</tr>
<tr>
<td>10</td>
<td>+12 V</td>
<td>Hall sensors supply voltage: output impedance = 9 Ohm, max. 150 mA available</td>
</tr>
<tr>
<td>23</td>
<td>AGND</td>
<td>Hall sensors supply GND</td>
</tr>
<tr>
<td>9</td>
<td>TC+</td>
<td>Motor thermal sensor input</td>
</tr>
<tr>
<td>22</td>
<td>TC-</td>
<td>Motor thermal sensor input</td>
</tr>
<tr>
<td>others</td>
<td>reserved</td>
<td></td>
</tr>
</tbody>
</table>

SIN/COS ENCODER CHANNELS SPECIFICATION

![SIN/COS ENCODER CHANNELS SPECIFICATION Diagram]
6.3 – X3 CONNECTOR FOR ABSOLUTE SINGLE-TURN SinCos ENCODER (Sub D 25 pins female)

The "SinCos absolute single-turn" incremental encoder configuration (Heidenhain ERN 1085 or compliant) is software selectable and stored in the drive EEPROM.

The corresponding X3 connector pin function is described below.

<table>
<thead>
<tr>
<th>PIN</th>
<th>FUNCTION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Marker R/</td>
<td>Differential input of the Sin/Cos encoder reference pulse R/</td>
</tr>
<tr>
<td>13</td>
<td>Marker R</td>
<td>Differential input of the Sin/Cos encoder reference pulse R</td>
</tr>
<tr>
<td>14</td>
<td>Channel A/</td>
<td>Differential input of the Sin/Cos encoder channel A/</td>
</tr>
<tr>
<td>1</td>
<td>Channel A</td>
<td>Differential input of the Sin/Cos encoder channel A</td>
</tr>
<tr>
<td>15</td>
<td>Channel B/</td>
<td>Differential input of the Sin/Cos encoder channel B/</td>
</tr>
<tr>
<td>2</td>
<td>Channel B</td>
<td>Differential input of the Sin/Cos encoder channel B</td>
</tr>
<tr>
<td>16</td>
<td>Channel C/</td>
<td>Differential input of the Sin/Cos encoder channel C/</td>
</tr>
<tr>
<td>3</td>
<td>Channel C</td>
<td>Differential input of the Sin/Cos encoder channel C</td>
</tr>
<tr>
<td>17</td>
<td>Channel D/</td>
<td>Differential input of the Sin/Cos encoder channel D/</td>
</tr>
<tr>
<td>4</td>
<td>Channel D</td>
<td>Differential input of the Sin/Cos encoder channel D</td>
</tr>
<tr>
<td>8</td>
<td>+5V</td>
<td>Encoder supply voltage (max. current = 300 mA)</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
<td>Encoder supply GND</td>
</tr>
<tr>
<td>9</td>
<td>TC+</td>
<td>Motor thermal sensor input</td>
</tr>
<tr>
<td>22</td>
<td>TC-</td>
<td>Motor thermal sensor input</td>
</tr>
<tr>
<td>others</td>
<td>reserved</td>
<td></td>
</tr>
</tbody>
</table>

SIN/COS ENCODER CHANNELS SPECIFICATION

Sin/Cos commutation channels Specification
6.4 - X3 CONNECTOR FOR "PULSE / DIRECTION" INPUTS (Sub D 25 pins female)

The configuration of the "Pulse / Direction" inputs is software selectable and stored in the drive EEPROM. The corresponding X3 connector pin function is described below.

<table>
<thead>
<tr>
<th>PIN</th>
<th>FUNCTION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>PULSE/</td>
<td>Differential input of the PULSE/ channel</td>
</tr>
<tr>
<td>6</td>
<td>PULSE</td>
<td>Differential input of the PULSE channel</td>
</tr>
<tr>
<td>20</td>
<td>DIR/</td>
<td>Differential input of the DIR/ channel</td>
</tr>
<tr>
<td>7</td>
<td>DIR</td>
<td>Differential input of the DIR channel</td>
</tr>
<tr>
<td>others</td>
<td>reserved</td>
<td></td>
</tr>
</tbody>
</table>

SPECIFICATION OF THE PULSE AND DIRECTION SIGNALS

6.5 - X3 CONNECTOR FOR ENCODER OUTPUT (Sub D 25 pins female)

At power on, the differential channels A, B and Z are configured as encoder inputs. The configuration as encoder outputs must be enabled via the CANopen bus.

The corresponding X3 connector pin function is described below.

<table>
<thead>
<tr>
<th>PIN</th>
<th>FUNCTION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Channel A/</td>
<td>Differential output of channel A/</td>
</tr>
<tr>
<td>6</td>
<td>Channel A</td>
<td>Differential output of channel A</td>
</tr>
<tr>
<td>20</td>
<td>Channel B/</td>
<td>Differential output of channel B/</td>
</tr>
<tr>
<td>7</td>
<td>Channel B</td>
<td>Differential output of channel B</td>
</tr>
<tr>
<td>18</td>
<td>Marker Z/</td>
<td>Differential output of channel Z/</td>
</tr>
<tr>
<td>5</td>
<td>Marker Z</td>
<td>Differential output of channel Z</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
<td>0 V reference of the drive</td>
</tr>
<tr>
<td>others</td>
<td>reserved</td>
<td></td>
</tr>
</tbody>
</table>
SPECIFICATION OF THE ENCODER OUTPUT SIGNALS

7 - X6 AND X7 CONNECTORS: CAN-OPEN

SUB D 9 PINS MALE AND FEMALE (SAME FOR ALL DRIVE TYPES XTRAPULS CD1-k-230/I AND CD1-k-400/I)

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CAN-L</td>
<td>CAN-L line (dominant low)</td>
</tr>
<tr>
<td>3</td>
<td>CAN-GND</td>
<td>CAN Ground</td>
</tr>
<tr>
<td>7</td>
<td>CAN-H</td>
<td>CAN-H line (dominant high)</td>
</tr>
</tbody>
</table>

8 - X5 CONNECTOR: RS-232

SUB D 9 PINS MALE (SAME FOR ALL DRIVE TYPES XTRAPULS CD1-k-230/I AND CD1-k-400/I)

<table>
<thead>
<tr>
<th>PIN</th>
<th>FUNCTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0 Volt</td>
<td>GND (shield connection if no "360°" connection on the connector)</td>
</tr>
<tr>
<td>3</td>
<td>TXD</td>
<td>Transmit data RS-232</td>
</tr>
<tr>
<td>2</td>
<td>RXD</td>
<td>Receive data RS-232</td>
</tr>
</tbody>
</table>

9 - X8 CONNECTOR: AUXILIARY SUPPLY AND BRAKE

SAME CONNECTOR FOR XTRAPULS CD1-k-230/I AND XTRAPULS CD1-k-400/I DRIVE TYPES

4 pin male connector with 5.08 mm pitch (female connector provided). Tightening torque of the connector screws: 0.5 Nm.

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>I/O</th>
<th>FUNCTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>I</td>
<td>Potential reference of the 24VDC supply</td>
<td>Grounded potential reference</td>
</tr>
<tr>
<td>2</td>
<td>+24 Vdc</td>
<td>I</td>
<td>24 VDC auxiliary supply (mains isolated)</td>
<td>24 Vdc +/-15% - 0.320 A without brake Regulation with load: 3% UL: Protection by 4A UL fuse</td>
</tr>
<tr>
<td>3</td>
<td>Brake +24 V</td>
<td>O</td>
<td>Motor brake supply with 24 VDC</td>
<td>Powerless brake: 24 Vdc / 1.5 A</td>
</tr>
<tr>
<td>4</td>
<td>Brake -</td>
<td>O</td>
<td>Direct motor brake control Imax = 1.5 A</td>
<td>Grounded brake load</td>
</tr>
</tbody>
</table>
10 - X9 CONNECTOR: POWER

Xtrapuls CD1-k-230/I: 10 pins male connector with 5.08 mm pitch (female connector provided).
Xtrapuls CD1-k-400/I: 10 pins male connector with 7.62 mm pitch (female connector provided).
Xtrapuls CD1-k-400/70 and 90: 10 pins male connector (with 10.16 mm pitch).

Female connectors supplied in 2 parts: 7 pins female, pins 1 to 7 and 3 pins female, pins 8 to 10 for the motor.

Tightening torque of the connector screws: 0.5 Nm.

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>I/O</th>
<th>FUNCTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RB</td>
<td>O</td>
<td>Energy dissipation at the motor braking with high inertia and high speed</td>
<td>CD1-k-230/I: 100 Ω / 100 W (dp 100/100) CD1-k-400/1.8 to 7.2: 200 Ω / 100 W (dp 200/100) CD1-k-400/14: 50 Ω / 200 W (dp 50/200) CD1-k-400/30/45: 33 Ω / 280 W (dp 33/280) CD1-k-400/70 and 90: 16.5 Ω / 560 W (dp 16.5/560) The braking resistors must be separately ordered.</td>
</tr>
<tr>
<td>2</td>
<td>RB</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DC-</td>
<td>I/O</td>
<td>Parallel connection of the DC bus</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>L1</td>
<td>I</td>
<td>Mains input</td>
<td>CD1-k-230/I 230 Vac single-phase or three-phase CD1-k-400/I 400 to 480 Vac three-phase</td>
</tr>
<tr>
<td>5</td>
<td>L2</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L3</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DC+</td>
<td>I/O</td>
<td>Parallel connection of the DC bus</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>O</td>
<td>Motor W phase</td>
<td>Motor cable with grounded connection by means of Faston socket and 360° shield connection on grounded collar</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>O</td>
<td>Motor V phase</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>U</td>
<td>O</td>
<td>Motor U phase</td>
<td></td>
</tr>
</tbody>
</table>

IMPORTANT
The motor and brake cables must be shielded and connected over 360° on the collars mounted for this purpose on the housing.
The ground wire of the motor cable MUST be connected to the Faston socket marked "GND".
The ground reference must also be connected to the second Faston socket.

The installer of the drives has to use a UL Listed Quick connect for ground connection (0.250 inches or 6.35 mm wide nominal).
Field wiring terminals have to use copper conductors only.
Torque value for field wiring terminals: value to be according to the Recognized terminal block used.
Chapter 4 - Connections

1 - CONNECTION DIAGRAMS

1.1 – XTRAPULS CD1-k-230/I DRIVE

(For the UL compliant connection, see chapter 4, section 4.4).

Note: The 24 V and power supplies protection, on source side, must be made by the user.
1.2 – XTRAPULS CD1-k-400/I DRIVE

(For the UL compliant connection, see chapter 4, section 4.5)

Note: The 24 V and power supplies protection, on source side, must be made by the user.
1.3 - CONNECTION OF THE SERIAL LINK

1.4 - CONNECTION OF A BACKUP BATTERY

The consumption of the Xtrapuls CD1-k drive is 320 mA with 24VDC. So, a 24 V / 30 A/h battery can keep the drive under voltage during i.e. a long 3 days week-end. This backup method is very interesting for saving the machine initialization as well as the axis position even when moving with mains switched off.
1.5 - CONNECTION FOR A MULTIAXIS APPLICATION

2.1 - GROUND CONNECTIONS AND LEAKAGE CURRENT

CAUTION!
Each potential conducting element must be shielded. Several potential conductors in the same sleeve must be twisted and shielded.

A shield has no effect if it is not connected:
- to a reference potential,
- by a connection as short as possible (a few centimeters; 10 centimeters is prohibited),
- by a "360°" shield connection. This means that the whole circumference of the shield sleeve must be connected to the reference conduction via a metal collar.

The connectors used for the compliance with the EN61000.4 standard must be made of metal or metallized and must allow the 360° shield connections.

Reference potential loops (especially with the ground) are recommended only if these connections have a very low impedance (< 0.1 Ω). Any shield that is not used as a conductor can be connected at both ends with the condition to be connected over 360° at both ends by means of metal links in order to ensure the shield continuity.
The reference potential must be the ground.

Cables with low potential should never run in the proximity of high power lines.

If there is a potential reference, i.e. a main chassis or cabinet with a low impedance between its different elements, it should be used to connect ALL references to it and also being grounded itself.

LEAKAGE CURRENT TO THE GROUND

The "Electronic Power Unit" equipment which includes the control, the drive, the motor and the sensors, generates a leakage current to the ground higher than 30 mA continuous: the protection conductor section must be at least 10 mm² (Cu) or 16 mm² (Al).

This product may generate a leakage current with a DC component. If a Residual Current Device is used, it should be:
- type A in single-phase applications
- type B in three-phase applications

The use of a 300 mA trip current is recommended.
2.2 - SHIELD CONNECTION OF THE CONNECTORS

RULE
The shield should never be interrupted or corrupted over the whole cable length.

Example for the single-axis model:

NOTE
When the 360° shield connection is made by means of a collar, it is not necessary to connect a cable on the appropriate pin of the SUB-D connector.
Maximum tightening torque of the ground connection: 3.6 Nm

2.4 – MOTOR, RESOLVER AND ENCODER CABLES

Motors, resolvers and encoders are grounded via their housing.
Cable inputs must be made by means of metal connectors with collars allowing the 360° shield connection.

The resolver cable must be pair twisted and shielded (sin, cos, ref.). Motor cables MUST also be shielded and connected over 360° at both ends as shown on the shield connection diagram.

The encoder inputs A, B, C, D, Z and R require a pair twisted and shielded cable. The shield must have a “360°” connection via metallic collars at both ends. If the shield is connected by means of a pig tail, it must be connected at one end to the GND pin of the connector on the drive side with a connection as short as possible.

Check that the voltage drop in the power supply lines of the encoder cable is complying with the technical specifications of the encoder. The voltage drop value for a given cable is calculated as follows:

\[\Delta U[V] = 40 \times 10^{-6} \frac{Lc[m] \times imA}{S[mm^2]} \]

with
- \(\Delta U \): voltage drop in volts
- \(Lc \): cable length in meters
- \(I \): encoder current in milliamps (see technical specifications)
- \(S \): cross section in square millimeters

Due to this voltage drop:

- an encoder with a large power supply voltage range should be preferred,
- if the encoder has got power supply SENSE feedback lines, they can be connected to the power supply lines in order to reduce the voltage drop by the half (the SENSE feedback signal is not used in the Xtrapuls CD1 range),
- if none of both solutions above can be used, the user has to supply the encoder by means of an external power supply.
Example

The application requires an Heidenhain linear encoder supplied by 5 V ±5 % / 300mA with 25 m cable length. Min. power voltage: 5 V ±5 % \(\Delta U_{\text{max}} = 0.25 \text{ V} \). Min. cross section: \(S = 1.2 \text{ mm}^2 \). Such a large cross section is difficult to obtain, so the user can:

- either connect the SENSE feedback signal lines with power supply lines, while the needed wires cross section will be the half (0.6 mm²),
- or use the same encoder type but the version which allows its power supply voltage from 3.6 V to 5.25V / 300mA. Min power voltage 3.6V \(\Delta U_{\text{max}} = 1.4 \text{ V} \). Min. cross section : \(S = 0.21 \text{ mm}^2 \).

The cables of brake equipped motors must also have their brake cables shielded in order to be EMC compliant.

Maximum cable length: - resolver: \(\leq 100 \text{ m} \)
- encoder: \(\leq 25 \text{ m} \)
- motor: \(\leq 25 \text{ m} \).

For motor cable length > 25 m, we advise:

- to use the maximum cable section allowed by the connectors,
- to mount a reactance with an inductive value between 1 % and 3 % of the motor inductive value. The reactance inductive value must be taken into account in the calculation of the current loops. The current rating of the reactance must be equal to or higher than the drive rating. The reactance must be mounted at the drive output. Due to the use of a reactance, a shielded cable is not mandatory anymore. A more complex sinus filter type B84143V x R127 by Epcos may also be mounted instead of the reactance.

UNDESIRABLE EFFECTS OF MOTOR CABLES LONGER THAN 25 m:

- Heating of the power module, the motor and the cable.
- High overvoltages on the motor windings involving a shortening of their life time.

The reactance reduces the undesirable effects on motor and drive but it may be quite heated. This requires an appropriate fan.

2.5 - SERIAL LINK AND CAN COMMUNICATION CABLES

Serial link and CAN communication cables must also be shielded according to the shield connection recommendations above.

CAUTION!
Control cables (resolver, serial link, CAN) and power cables must be connected and disconnected with the drive OFF.
Recall:
The power voltage may remain several minutes on the capacitors terminals. A contact under high voltage may involve severe physical damage.

2.6 - CONNECTION CABLES OF THE BRAKING RESISTOR

The connection cable to the braking resistor housing must bear the high voltage and temperature of 600 V and 105°C.
Recommended cable: UL1015 gauge 14.
Fastening torque on the connector of the braking resistor housing: \(dp = 0.9 \text{ Nm} \).
3 - FIRST POWERING OF THE DRIVE

3.1 - VERY IMPORTANT

Check the connections, especially of the 24 VDC and power supplies. There are two different voltage ratings: 230 Vac and 400 Vac. Check that the appropriate sticker actually corresponds to the power connections. **A 400 Vac connection on a 230 V drive will destroy it.**

The INHIBIT signal (X2 connector, pin 1) must be disabled.

Check for the braking resistor sizing:
- dp 100/100 for 230 VAC,
- dp 200/100 for 400 VAC and current ratings 1.8 to 7.2,
- dp 50/200 for 14 A current rating,
- dp 33/280 for 30 and 45 A current ratings,
- dp 16.5/560 for 70 and 90 A current ratings.

Check for the correct groundings as well as the 360° shield connections.

WARNING !
During the machine adjustments, drive connection or parameter setting errors may involve dangerous axis movements. It is the user's responsibility to take all necessary steps in order to reduce the risk due to uncontrolled axis movements during the operator's presence in the concerned area.

3.2 - SWITCHING ON THE 24 Vdc SUPPLY

The green "OK" LED on the front panel must be flashing ("Undervolt." error displayed).

The AOK relay (pins 9 and 10 of X2) is closed. It is then possible to control the power relay (Rpu) according to the instruction of chapter 4, section 1: Connection diagrams.

Connection according to X8 sticker.

3.3 – SWITCHING ON THE POWER SUPPLY (230 Vac or 400 Vac according to the drive type)

The green "OK" LED on the front panel must be continuously lit.

3.4 - COMMISSIONING

For further details regarding the drive commissioning, please see manual Xtrapuls CD1-k – User Guide.

4 - REQUIREMENTS FOR THE COMPLIANCE WITH THE UL STANDARDS

The UL listing requires the following conditions to be fulfilled by the installer of the drives.

4.1 - CONNECTION BY MEANS OF A FASTON SOCKET

The installer of the drives must use a UL Listed Quick connect for ground connection (0.250 inches or 6.35 mm wide nominal) on all drives equipped with FASTON sockets.

On drives equipped with a screwed ground connector, the connection must be made via UL listed sockets.

4.2 - 24 V SUPPLY

The end user has to provide a 24 VDC isolated power supply (i.e. with an isolation transformer) for the auxiliary supply input, protected by a 4 A UL listed fuse.
4.3 - POWER SUPPLY AND UL FUSE RATING

The fuse type recommended for motor applications is of class RK5. The maximum short-circuit power of the mains must not exceed 5000 Arms at a voltage of 480 V, when protected by a UL fuse of type RK5 and A60Q40 for 400/70 and 400/90 ratings.

On Xtrapuls CD1k-400/I drives, the fuse ratings must be the following:

<table>
<thead>
<tr>
<th>CD1-k</th>
<th>400/1.8 to 7.2</th>
<th>400/14</th>
<th>400/30 and 45</th>
<th>400/70 and 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSSMANN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class RK5</td>
<td>FRS-R-4</td>
<td>FRS-R-8</td>
<td>FRS-R-20</td>
<td>FERRAZ</td>
</tr>
<tr>
<td>Type FRS-R</td>
<td></td>
<td></td>
<td></td>
<td>A60Q40</td>
</tr>
<tr>
<td>LITTELFUSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class RK5</td>
<td>FLSR2ID</td>
<td>FLSR8ID</td>
<td>FLSR20ID</td>
<td>FERRAZ</td>
</tr>
<tr>
<td>Type FLSR-ID</td>
<td></td>
<td></td>
<td></td>
<td>A60Q40</td>
</tr>
</tbody>
</table>

On Xtrapuls CD1k-230/I drives, the fuse ratings must be the following:

<table>
<thead>
<tr>
<th>CD1-k</th>
<th>230/2.5 to 10.5</th>
<th>230/16.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSSMANN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class RK5</td>
<td>FRN-R-6</td>
<td>FRN-R-9</td>
</tr>
<tr>
<td>Type FRN-R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LITTELFUSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class RK5</td>
<td>FLNR6ID</td>
<td>FLNR9ID</td>
</tr>
<tr>
<td>Type FLNR-ID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.4 – XTRAPULS CD1-k-230/I DRIVE: CONNECTION DIAGRAM WITH PROTECTIONS BY "UL" FUSES
(According to section 4.3 of this chapter)

IMPORTANT
The installer of the drive has to use a UL listed quick connect for ground connection (0.250 inches or 6.35 mm wide nominal)
Field wiring terminals must use copper conductors only
Torque value for field wiring terminals: according to the Recognized terminal block used.
4.5 – XTRAPULS CD1-k-400/I DRIVE: CONNECTION DIAGRAM WITH PROTECTIONS BY "UL" FUSES

(According to section 4.3 of this chapter)

IMPORTANT

The installer of the drives has to use a UL listed quick connect for ground connection (0.250 inches or 6.35 mm wide nominal).

Field wiring terminals must use copper conductors only.

Torque value for field wiring terminals: according to the Recognized terminal block used.

(CD1-k-400/I 3,2 to 7,2; do 200/100 CD1-k-400/14; dp 50/500 CD1-k-400/30 and 45 A dp 33/280 CD1-k-400/70 and 90 A dp 16,5/560)

10 A for I or = 14 A

20 A for I = 30 and 45 A
40 A for I = 70 A and 90 A

(1) CAUTION I max = 100 mA (see AOK output specifications)
4.6 - CONNECTION EXAMPLE FOR A UL COMPLIANT MULTIAxis APPLICATION

![Diagram showing connections for a multiaxis application with labels for X8, 24 V, 0 V, and dp connections.]

For the choice of the fuses, see chapter 4, section 4.3.

*** CD1-k-230 V: 3 x 230 V
CD1-k-400 V: 3 x 400 V
Chapter 5 - Appendix

1 - HARDWARE ADJUSTMENTS OF THE LOGIC BOARD
2 – ADJUSTMENT TO VARIOUS RESOLVER TYPES

For the use of other resolvers than those mounted on MAVILOR motors in their standard version, see following wiring diagram of the X1 connector as well as the manufacturer's diagram:

For the use of resolvers with transformation ratios out of the range 0.3 to 0.5, the adjustment must be factory set.

NOTE
When using resolvers with a number of pole pairs N > 1, all speed values displayed in the drive are equal to N times the motor rotation speed.

3 - USE OF THE "AOK" OUTPUT

The "AOK" output MUST be used on a potential free relay in order to allow the connection of the power supply (see Chapter 4, section 1: Connection diagrams).

The correct drive operation requires this connection logic. Switching on the power supply before initializing by means of the 24 VDC auxiliary supply will hinder the operation. It will then be necessary to proceed according to the instructions contained in this manual.

(1) CAUTION | I_{max} = 100 mA (see AOK output specifications)
4 - ENERGY RECUPERATION VIA A BRAKING RESISTOR

All Xtrapuls CD1 drives are equipped with the power feedback system. When the motor is decelerating with high inertia and high speed, the mechanical braking energy is reflected to the drive. This energy is dissipated inside a resistor called "braking resistor".

In order to avoid heat dissipation inside the drive, the braking resistor is **ALWAYS** mounted outside. It **MUST** be mounted out of range of heat sensitive and inflammable elements (plastic, cable sleeves, etc.).

For an optimum power feedback by the drives in a multiaxis application, the DC bus (DC+ and DC-) can be connected in parallel (see diagram in chapter 4, section 1.5).

In this case, the mains input must also be parallel wired in order to balance the current load inside the AC/DC converters.

It is recommended to mount the braking resistor on the drive with highest current rating. An electronic control of the reflected power avoids the overloading of the braking resistor. So, if the energy reflected to the drives with parallel mounted DC busses is too high, the DC bus voltage will rise up to the triggering of the "Overvoltage" fault. A second resistor must then be mounted on the second axis.

5 - ORDERING CODE

Single-axis version:

<table>
<thead>
<tr>
<th>XTRAPULS CD1 - k - U</th>
<th>I - CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>k: CANopen - 12 bit resolver</td>
<td></td>
</tr>
<tr>
<td>U: 230: 230 Vac voltage rating</td>
<td></td>
</tr>
<tr>
<td>400: 400/480 Vac voltage rating</td>
<td></td>
</tr>
<tr>
<td>I: 2.25 / 4.5 / 7.5 / 10.5 / 16.5 Arms</td>
<td></td>
</tr>
<tr>
<td>1.8 / 2.7 / 5.1 / 7.2 / 14 / 30 / 45 / 70 / 90 Arms</td>
<td></td>
</tr>
</tbody>
</table>

"Cogging torque compensation" option